

Dose from tomosynthesis of the bony anatomy

Comparison with digital radiography and CT

M. Sutto^{1,2}, P.E. Colombo¹, A. Maldera^{1,2}, A.Torresin¹
1 ASST Grande Ospedale Metropolitano Niguarda (MI)
2 Università degli Studi di Milano (MI)

e-mail: marina.sutto30@gmail.com

Introduction

Radiography major limitation:

overlaying projected anatomy

Possible solutions - 1

Tomosynthesis

FujiFilm FDR AcSelerate

Available configurations

			Scan angle (α deg)			
scan time (s)	Number of projections		20	30	40	60
4		20	~	~	~	
6		30		~	~	
8		40			~	~
9		45			~	~
12		60				~

Possible solutions - 2

Computed tomography (CT)

Siemens Somatom Definiton

Purpose

Evaluate and compare radiation dose to organs and effective dose from:

1. Radiography

2. Tomosynthesis

3. CT

In bony anatomy examination of

1. Shoulder

2. Hip

3. Lumbar spine

Method Simulation of the exams with software for organ dose estimation

Radiography

PCXMC 2.0

Tomosynthesis

PCXMC20Rotation

CT-Expo

Radiation Dose Results Shoulder

Radiography		Tomosynthesis		СТ	
mAs	25	mAs/proj	4	mAs	230 (M)
kVp	75	kVp	65	IIIAS	170 (F)
FID (cm)	140	FID	130	kVp	120
		Total angle (°)	60	collimation (mm)	19.2
		Number of proj	60	pitch	0.9
ESAK (mGy)	0.87	ESAK (mGy)	3.8	nCTDIvol (mGy/100mAs)	8.5

Equivalent dose (mSv)						
RX TOMO CT						
Lung	0.16	0.70	20			
Lung Breast (F)	0.46	2.10	20			
Thyroid	0.74	0.24	18			
Effective dose (mSv)	0.13	0.40	8.2			

^{*} The effective dose is obtained as a weighted sum of sex-averaged organ doses

Dose (mSv)

9.0

8.0

7.0

6.0

Radiation Dose

Results Hip

Radiography		Tomosynthesis		СТ	
mAs	19	mAs/proj	5	mAs	120 (M)
kVp	70	kVp	80	IIIAS	105 (F)
FID (cm)	140	FID	130	kVp	120
		Total angle (°)	60	collimation (mm)	19.2
		Number of proj	60	pitch	0.9
ESAK (mGy)	0.65	ESAK (mGy)	3.6	nCTDIvol (mGy/100mAs)	8.5

Equivalent dose (mSv)							
RX TOMO CT							
Conada	0.70 (M)	6.7 (M)	15.4 (M)				
Gonads	0.10 (F)	1.8 (F)	10.3 (F)				
Colon	0.10	1.2	9				
Uterus (F)	0.15	2.6	12.4				
Effective dose (mSv)	0.05	0.77	3.6				

^{*} The effective dose is obtained as a weighted sum of sex-averaged organ doses

Radiation Dose Results Lumbar Spine

Radiography		Tomosynthesis		СТ	
mAs	40	mAs/proj	12.5	mAs	220
kVp	85	kVp	100	kVp	120
FID (cm)	120	FID	130	collimation (mm)	19.2
		Total angle (°)	40	pitch	1
		Number of proj	45		
ESAK (mGy)	5.0	ESAK (mGy)	30.4	nCTDIvol (mGy/100mAs)	7.6

Equivalent dose (mSv)							
RX TOMO CT							
Canada	0.50 (M)	2.70 (M)	0.70 (M)				
Gonads	0.30 (F)	5.80 (F)	16.7 (F)				
Colon	0.26	5.3	15				
Uterus (F)	0.42	4.9	19.7				
Effective dose (mSv)	0.11	1.75	7.6				

^{*} The effective dose is obtained as a weighted sum of sex-averaged organ doses

Conclusions

Dosimetry is one of the factors that need to be evaluated before the prescription of a diagnostic radiological procedure.

With the parameters simulated in this study, dose from tomosynthesis is lower (1/4 or less) than dose from CT and higher (2 to 10 times) than dose from radiography both for the thoracic district and the abdominopelvic one.

